Efficacy and safety of a 12-week course of therapy with a new formulation of fluticasone propionate at doses of 125 and 250 µg administered through a new generation cyclohaler twice...

Keywords: bronchial asthma, fluticasone, new generation cyclohaler, non-inferiority study.

Bronchial asthma is currently one of the most frequent chronic diseases of the respiratory system. There are nearly 4 million people with asthma in Poland [1]. The origin of asthma is chronic inflammation of the airways, which causes bronchial hyperreactivity and symptoms of bronchial asthma. Therefore, the basis for therapy are inhaled glucocorticosteroids, which are considered to be the strongest anti-inflammatory drugs, and which are recommended for all forms of chronic asthma, irrespective of aetiology and control [2].

Fluticasone distinguishes itself from other inhaled glucocorticosteroids by its high affinity with intracellular glucocorticoid receptor (18 times higher than dexamethasone), and its high lipophilic nature, which results in strong and long-lasting activity of the drug in the bronchi. Simultaneously, fluticasone demonstrates a very poor bioavailability from the oral cavity and alimentary tract (< 1%), it binds rapidly and in large proportion with plasma protein, and it comes under first-pass effect in the liver, which significantly reduces the risk of systemic side-effects [3].

The aim of the present study was to evaluate the efficacy and safety of a new formulation of fluticasone propionate at a dose of 125 and 250 µg administered twice a day (BID) for 12 weeks, compared to the original fluticasone DPI 500 in patients with chronic moderate asthma.

Material and methods
The study was a Phase III type and was designed as a multicentre (23 centres: 16 in Poland and 7 in Ukraine), randomized, open-label, parallel-group and positive control study. The centres received consent to the study from local Bioethics Commissions. The scheme of the study is presented in Figure 1.

![Figure 1. The scheme of the study](image-url)
The study groups

The following criteria for participation in the study were applied:

1. People of both sexes, from 18 to 70 years of age.
2. Moderate bronchial asthma diagnosed at least 3 months prior to the first visit.
3. Reversibility of airway obstruction (increase in FEV₁ of at least 12% after administration of 400 µg of salbutamol) shown during the first visit.
4. Predicted FEV₁ value in the range 50 to 85% during the first and subsequent visits.
5. Ability to follow the procedures of the study, including the use of inhalators, peak expiratory flow gauge and spirometry.
6. Failure to use short-acting (β2-agonist) at least 6 hours before visits at the centre.
7. Deliberate consent to participation in the study.
8. The use of an efficient contraceptive method by women of reproductive age and negative pregnancy test of serum during the first visit, and of urine during a randomized visit.

Exclusion criteria:

1. Grave, life-threatening bronchial asthma or hospitalization due to exacerbation of asthma for 3 months prior to the first visit.
2. Uncontrolled or untreated clinically significant immunological, hormonal, haematological, gical, psychiatric or neurological disorders, hepatopathy, nephropathy, diseases of the alimentary system or neoplasms.
3. The presence or history of cardiac dysrhythmia and diagnosed diseases of cardiovascular system, including coronary heart disease, circulatory failure and uncontrolled arterial hypertension (diastolic pressure >95 mm Hg).
4. Infection of the respiratory system requiring antibiotic therapy 8 weeks before the first visit.
5. Significant diseases of the respiratory system other than asthma.
6. Smoking more than 10 cigarettes/24h or more than 10 pack-years in their history.
7. Seasonal asthma or history of seasonal exacerbations of asthma.
8. The use of banned drugs.
9. Participation in another clinical trial 3 months prior to the first visit.
10. Other diseases or factors that, in the opinion of the researcher, may disrupt participation in the study.
11. Hypersensitivity or allergy to the drugs used in the study.
12. Diabetes.
13. Irregular PEF measurements and taking of the studied drugs (more than 20% of measurements omitted or doses of the studied drug not taken).
14. The use of systemic steroids 8 weeks prior to the first visit.

The scheme of the study

The active period of the study lasted 12 weeks and was preceded by a 2-week screening period, during which patients were given placebo (single-blind study). On the first day of the active period participants were randomly assigned to one of the three therapeutic arms. In the first arm patients were administered fluticasone 125 µg b.i.d through new generation cyclohaler, in the second one — fluticasone 250 µg BID also through new generation cyclohaler, in the third one — fluticasone DPI 500 BID. Only doses administered through new generation cyclohaler were double-blinded. Each patient had 6 planned visits during the study.

The drugs used in the study

During the initial period, patients inhaled capsules with placebo through a metered-dose, new generation cyclohaler, Fantasmino.

During the active period the studied drug, fluticasone, was administered through a new generation cyclohaler, Fantasmino, at doses of 125 µg (Flutixon 125 µg) or 250 µg (Flutixon 250 µg).

The reference drug was Flutykazon Disc 500 (GlaxoSmithKline). The emergency drug was Ventolin 100 µg (GlaxoSmithKline).

Administration of the studied drug

Each drug was administered twice a day (in the morning and in the evening). The number of used capsules of the studied fluticasone and the doses of original fluticasone DPI was registered in the documentation during each visit. A criterion for continuation of the study was administration of > 80% of the doses of the drug.

Efficacy evaluation

The aim of the study was to evaluate the clinical efficacy of a new formulation of fluticasone at doses of 125 and 250 µg BID in comparison to the reference drug, fluticasone DPI 500 BID. We intended to demonstrate that the new formulation of the drug at the studied doses is as effective as the reference drug.

The primary endpoint was a mean change in morning PEF during 12 weeks of therapy (from the initial value — TO, to the value in the 12th week — T12). The initial value was the mean of 14 days of the screening period. A mean PEF was calculated during the 6th visit, from all data collected between the 5th and 6th visit.

Secondary endpoints were:

A. mean change in evening PEF (T0:T12);
B. mean change in FEV₁ (T0:T12);
C. mean change in overall intensification of asthma symptoms (T0:T12).

The following asthma symptoms were assessed: whistling rales, cough and dyspnoea on a scale from 0 — lack of symptoms up to 3 — serious symptoms;
D. sleep disorders due to asthma (T0:T12);
E. use of the emergency drug (T0:T12).

Safety evaluation

The secondary aim of the study was to evaluate the safety of new formulation of fluticasone at doses used in the study and to compare it with the safety profile of the reference drug.

The safety of the drugs was evaluated through the analysis of the occurrence and nature of adverse events, the frequency and reasons for withdrawal from the study, vital parameters, deviations from physical examination and laboratory investigation results. In the subgroup consisting of 45 people
(15 people from each therapeutic arm) morning Cortisol concentration in serum and in a 24-hour urine collection was determined.

Statistical analysis

Values of $P < 0.05$ were assumed as statistically significant. Clinical efficacy measured in a primary variable was compared between the groups by using the ANOVA model. As criterion for not smaller efficacy of the two Hoses of fluticasone 125 μg b.i.d and 250 μg BID, compared to the reference therapy, was assumed the condition, where the lower limit of a bilateral 95% confidence interval for the difference of a mean change in morning PEF between the studied therapies, was above 15L/min in both intention-to-treat and per protocol analyses.

Secondary endpoints — change in evening PEF, whereas the remaining parameters were analysed by using ANOVA: changes of a given parameter between initial data and endpoint were compared. The frequency of patients' withdrawal from the study in different groups was compared with the use of Kaplan-Meier analysis.

The analysis of adverse events was carried out with the help of descriptive statistics and tests for qualitative data analysis. Additional analysis was made in the subgroup, where the Cortisol levels in serum and urine were assessed. The change was assessed with the ANOVA method.

The size of the study group

It was calculated that the availability of complete data from 100 patients from each therapeutic group, with standard deviation from morning PEF 50 L/min. will allow finding a statistically significant difference in change in morning PFF by 15 l/min. with an 80% force and a 5% level of significance for paired comparisons.

Results

Characteristics of the study groups

A total of 457 patients were included in the study. Of these, 356 patients made the study group in accordance with the protocol (per protocol group, PP). Intention-to-treat analysis (ITT group) included 376 patients who were all randomized and treated with at least one dose of the studied drug.

The analysis of adverse events was carried out with the help of descriptive statistics and tests for qualitative data analysis. Additional analysis was made in the subgroup, where the Cortisol levels in serum and urine were assessed. The change was assessed with the ANOVA method.

Table 1

<table>
<thead>
<tr>
<th>Characteristic of therapeutic groups</th>
<th>Fluticasone new generation cyclohaler 125</th>
<th>Fluticasone new generation cyclohaler 250</th>
<th>Fluticasone DPI 500</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>127</td>
<td>125</td>
<td>124</td>
<td>-</td>
</tr>
<tr>
<td>Women/men</td>
<td>82/45</td>
<td>78/47</td>
<td>70/54</td>
<td>-</td>
</tr>
<tr>
<td>Age (years) mean ± SD</td>
<td>42.26 ± 12.9</td>
<td>42.57 ± 13.33</td>
<td>42.57 ± 13.80</td>
<td>0.2751</td>
</tr>
<tr>
<td>Height (cm) mean ± SD</td>
<td>167.53 ± 8.49</td>
<td>168.9 ± 10.18</td>
<td>168.9 ± 13.12</td>
<td>0.4923</td>
</tr>
<tr>
<td>Weight (kg) mean ± SD</td>
<td>74.18 ± 14.03</td>
<td>74.86 ± 14.69</td>
<td>74.86 ± 15.79</td>
<td>0.8544</td>
</tr>
<tr>
<td>Tobacco smokers</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>0.9683</td>
</tr>
<tr>
<td>Cardiac activity/min</td>
<td>71.99 ± 7.94</td>
<td>72 ± 7.5</td>
<td>72 ± 7.43</td>
<td>0.5694</td>
</tr>
<tr>
<td>Systolic pressure mm Hg</td>
<td>126 ± 44</td>
<td>122.58 ± 9.48</td>
<td>124.49 ± 10.08</td>
<td>0.3022</td>
</tr>
<tr>
<td>Diastolic pressure mm Hg</td>
<td>79.12</td>
<td>77.32 ± 7.09</td>
<td>78.15</td>
<td>0.531</td>
</tr>
<tr>
<td>Respiratory rate/min</td>
<td>16.76</td>
<td>17.07 ± 2.23</td>
<td>16.92</td>
<td>0.4917</td>
</tr>
<tr>
<td>FEV1 (L) mean ± SD</td>
<td>2.2 ± 0.59</td>
<td>2.25 ± 0.63</td>
<td>2.26 ± 0.62</td>
<td>0.3342</td>
</tr>
<tr>
<td>FEV1% PREDICTED mean ± SD</td>
<td>71.31 ± 9.35</td>
<td>70.16 ± 9.42</td>
<td>71.16 ± 8.37</td>
<td>0.491</td>
</tr>
<tr>
<td>AFEV1% (reversibility test)</td>
<td>24.75 ± 13.13</td>
<td>25.3 ± 12.59</td>
<td>25.97 ± 12.97</td>
<td>-</td>
</tr>
<tr>
<td>FVC (L) mean ± SD</td>
<td>3.25 ± 0.88</td>
<td>3.37 ± 0.94</td>
<td>3.37 ± 0.92</td>
<td>0.4659</td>
</tr>
<tr>
<td>mPEF (L/min) mean ± SD</td>
<td>395 ± 94.03</td>
<td>360.56 ± 80.92</td>
<td>369.68 ± 109.96</td>
<td>0.5771</td>
</tr>
<tr>
<td>ePEF (l/min) mean ± SD</td>
<td>371.10 ± 93.13</td>
<td>378.62 ± 80.33</td>
<td>385.02 ± 108.56</td>
<td>0.5078</td>
</tr>
<tr>
<td>Whistling rales mean pkt ± SD</td>
<td>1.18 ± 0.7</td>
<td>1.12 ± 0.73</td>
<td>1.07 ± 0.68</td>
<td>0.4704</td>
</tr>
<tr>
<td>Cough mean pkt ± SD</td>
<td>1.1 ± 0.68</td>
<td>1.0 ± 0.73</td>
<td>0.98 ± 0.65</td>
<td>0.3376</td>
</tr>
<tr>
<td>Dyspnea mean pkt ± SD</td>
<td>1.38 ± 0.65</td>
<td>1.37 ± 0.69</td>
<td>1.25 ± 0.69</td>
<td>0.2392</td>
</tr>
<tr>
<td>Sleep disorders mean pkt ± SD</td>
<td>1.84 ± 0.66</td>
<td>1.81 ± 0.66</td>
<td>1.76 ± 0.63</td>
<td>0.6068</td>
</tr>
<tr>
<td>Emergency drug mean N/d ± SD</td>
<td>3.88 ± 3.22</td>
<td>3.67 ± 3.44</td>
<td>3.83 ± 3.53</td>
<td>0.7546</td>
</tr>
</tbody>
</table>
The description of patients in the separate therapeutic groups is presented in Table 1. Randomization of patients is presented in Figure 2. In all patients the use of the studied drug and the number of PEF measurements was more than 80%.

Efficacy evaluation

Primary endpoint — a mean change in morning PEF after 12 weeks of therapy. In PP and ITT analyses, a mean change in morning PEF at the end of the treatment period, compared to the initial period, was statistically significant in all therapeutic groups. No significant differences concerning the mean change in morning PEF between the groups were observed during the 12th week of the therapy, or during the whole period of treatment. A comparable efficacy of fluticasone 125 and 250 BID, compared to the reference chug, was demonstrated after 12 weeks of the therapy as well as during the whole period of treatment (Table 2).

However, in both PP and ITT analyses, a tendency towards improvement in mPEF was observed in the group treated with fluticasone 250, compared to patients treated with fluticasone 125 (Table 3).

Secondary endpoints

In PP analysis, in all therapeutic groups, a significant improvement was observed in all secondary endpoints after 12 weeks of the therapy, compared to the initial period (Table 4). No significant differences were found between the groups in the mean change in secondary endpoints after 12 weeks of the therapy. Similar results were obtained in ITT analysis (Table 4).

Compliance — evaluation of the use of the studied drugs and PEF measurements during the study.

During the whole study, patients from all study groups were administered more than 98% of the planned doses of the studied drugs. Only one randomized patient omitted more than 20% of the drug doses between the 3rd and 4th visit; in the remaining period of treatment he met the criteria of the drug administration by more than 80%. The mean number of PEF measurements also exceeded 98% of the planned measurements for all therapeutic groups. None of the patients omitted 20% of the planned measurements, and so nobody was excluded from the study for this reason.

Safety evaluation

Safety analysis was carried out on the ITT group.

Adverse events

Generally, 143 adverse events were noted (61 — in the group treated with fluticasone 125, 30 — in the group treated with fluticasone 250, and 52 — in the group treated with fluticasone DPI 500) in 81 patients (29 patients from the group treated with fluticasone 125, 23 — from the group treated with fluticasone 250, and 29 — from the group treated with fluticasone DPI 500). The frequency of adverse events was significantly lower in the group treated with fluticasone 250 than in the remaining groups (p = 0.0005).

Of these, 48 cases of adverse events were expected and 95 were unexpected. 62.2% of all events were qualified as mild symptoms, 26.6% — as moderate, and barely 4.9% — as serious. In all study groups, treatment-related events with frequency exceeding 1% included: hoarseness, dry cough and sore throat. In none of the study groups the frequency of adverse events was significantly lower than in the remaining groups.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Fluticasone new generation cyclohaler 125</th>
<th>Fluticasone new generation cyclohaler 250</th>
<th>Fluticasone DPI 500</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>PP</td>
<td>ITT</td>
<td>PP</td>
<td>ITT</td>
</tr>
<tr>
<td>AmPEF L/min</td>
<td>25.9 ± 42.6</td>
<td>25.9 ± 42.6</td>
<td>31.9 ± 46.6</td>
<td>34 ± 47.9</td>
</tr>
<tr>
<td>p**</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

P analysis between the groups. **p** analysis in the groups.

<table>
<thead>
<tr>
<th>Non-inferiority analysis for AmPEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmPEF analysis</td>
</tr>
<tr>
<td>PP</td>
</tr>
<tr>
<td>AmPEF fluticasone 125 vs. fluticasone 250</td>
</tr>
<tr>
<td>-18.26</td>
</tr>
<tr>
<td>AmPEF fluticasone 125 vs. Fluticasone DPI 500</td>
</tr>
<tr>
<td>-11.37</td>
</tr>
<tr>
<td>AmPEF fluticasone 250 vs. Fluticasone DPI 500</td>
</tr>
<tr>
<td>-4.72</td>
</tr>
</tbody>
</table>
of treatment-related events did not exceed 5%: therefore, a comparative analysis was not carried out.

During the active treatment three serious adverse events occurred (uterine bleeding, infective exacerbations of asthma and pregnancy), but they were recognized as not related to the studied drug.

Laboratory results, vital functions and physical examination

No differences were observed in quantity or quality of deviation from the norm in laboratory investigations between the study groups. No significant differences were discovered.
in measurements of vital functions or physical examination between the three therapeutic groups during the study.

Cortisol concentrations

No significant differences were observed in initial serum Cortisol concentration in the morning, in Cortisol concentration in a 24-hour collection of urine before the active therapy, or after 12-week treatment, between the three groups, significant changes in Cortisol concentration in serum or in a 24-hour collection of urine between the initial level and the final visit were not observed in any of the groups (Table 5).

The frequency of exclusions from treatment with the studied drug

In total, 20 people were withdrawn from the study after randomization: 4 people from the group treated with fluticasone 125 µg, 5 from the group treated with fluticasone 250 µg, and 11 from the group treated with fluticasone DPI 500. Therapeutic groups were compared in respect of number (p = 0.0716) and reasons for exclusion of patients from the study.

Discussion

The studied drug — fluticasone propionate — administered through a new generation inhaler is a generic, new formulation drug. In comparison with the original drug, it is characterized by a twofold improved lung deposition, equal molecular weight and a smaller drug fraction remaining in the oral cavity after inhalation. This was proved by in vitro tests, run on an artificial model of the airways and pharmacokinetic studies, conducted on healthy volunteers with single (paper in press) and multiple doses (paper in press).

Their results allowed the hypothesis to be proposed that a therapeutic effect equivalent to that of the original drug may be obtained by using half the dose of the new formulation of fluticasone. In order to confirm this hypothesis, a 12-week clinical trial was planned. It was carried out on patients with chronic moderate asthma in accordance with guidelines by the EMEA concerning requirements for bioequivalence studies of a generic and reference drug.

According to the characteristics of the reference drug, in moderate asthma it is recommended to use fluticasone DPI at doses from 250 µg twice a day (BID) to 500 µg BID. In the present clinical study equivalents of the lowest therapeutic dose used in moderate asthma — fluticasone 125 µg DPI BID (equivalent to fluticasone DPI 250 BID), and of the highest dose — fluticasone 250 µg (equivalent to Fluticasone DPI 500 BID), were assumed. The lowest dose was assumed in order to show efficacy of the lowest dose used, whereas the highest dose was to prove the safety of the drug according to guidelines by the EMEA [7].

In bioequivalence studies of inhaled anti-inflammatory drugs, in order to show comparable efficacy of both products, the EMEA recommends that the study lasts at least 6-8 weeks, to exclude the loss of asthma control. To evaluate the safety of a generic product, it is recommended that the study lasts 12 weeks. The present study lasted 12 weeks; therefore, both conditions — efficacy and safety evaluation of the drug — were fulfilled. In order to confirm the systemic safety of the studied drug, a subgroup of patients was distinguished, in whom, additionally, the influence of the therapy on Cortisol concentration in blood and in a 24-hour collection of urine, was evaluated, and thus the additional recommendations of the EMEA were fulfilled [9].

The study results showed a significant improvement in morning PEF for the two evaluated doses of the studied drug. A beneficial change was also observed in secondary parameters of therapeutic efficacy: evening PEF, FKV, and FKV%, FVC, intensification of asthma symptoms and the use of emergency drugs. It proves the clinical efficacy of the two studied doses of the generic product.

The comparison of the efficacy of fluticasone at a dose of 125 µg BID with the generic product at a dose of 250 µg BID showed a weak dose-re- sponse relationship in the range of change in morning PEF.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Cortisol level in serum and urine, and its changes during 12 weeks of therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fluticasone new generation cyclohaler 125</td>
</tr>
<tr>
<td>Number of patients</td>
<td>11</td>
</tr>
<tr>
<td>Cortisol in serum (N 116-1060 nmol/L)</td>
<td></td>
</tr>
<tr>
<td>During the randomized visit</td>
<td>301.7 ± 117.7</td>
</tr>
<tr>
<td>during the final visit</td>
<td>-26.2 ± 126.4</td>
</tr>
<tr>
<td>p**</td>
<td>0.8311</td>
</tr>
<tr>
<td>Cortisol in urine (N 88-671 nmol/24h)</td>
<td></td>
</tr>
<tr>
<td>During the randomized visit</td>
<td>281.27 ± 149.35</td>
</tr>
<tr>
<td>during the final visit</td>
<td>-44.5 ± 145.9</td>
</tr>
<tr>
<td>p**</td>
<td>0.3352</td>
</tr>
</tbody>
</table>

P* analysis between the groups P** analysis in the groups
The majority of benefits resulting from the use of inhaled glucocorticosteroids are achieved by the use of low doses (up to 250 μg/d expressed in fluticasone, which equals 90% of the efficacy obtained with a dose of 1000 μg/d). Holt et al. estimated that the maximal therapeutic effect measured in the change of functional pulmonary parameters is achieved by the use of fluticasone DPI 500 μg/d [6]. Due to the fact that for these drugs the dose-response curve in the range of medium and higher doses has an almost flat course, a further increase in the dose results in a small clinical effect in respect of asthma control and functional pulmonary parameters, yet it increases the risk of intolerance and adverse, particularly local, events. The use of higher doses in clinical practice is justified by patients who are resistant to low doses of inhaled glucocorticosteroids, but who respond to high doses.

The comparison of the results concerning the efficacy of treatment with the generic product to treatment with the reference drug, demonstrated that the efficacy of the new formulation of fluticasone 250 μg BID administered through new generation cyclohaler is equal to the efficacy of fluticasone DPI 500 BID in the range of primary and secondary variables. It confirms the previous observations made during in vitro tests and pharmacokinetic studies, that two times better pulmonary deposition and equal molecular weight for a new formulation of the drug administered through new generation cyclohaler, compared to fluticasone DPI, allow the dose of the drug to be halved, retaining the clinical efficacy corresponding to the reference drug at a twofold higher dose.

The present study has not shown a higher efficacy of fluticasone DPI 500 BID, compared to the efficacy of fluticasone 125 μg BID administered through new generation cyclohaler. This is confirmed by the previously-described flat dose-response curve for fluticasone at doses higher than 250 μg/d for fluticasone DPI. The study by Wolf et al. [7] did not show a dose-response relationship for fluticasone in metered-dose inhaler (MDI) 100, 200 and 500 administered BID.

Therefore, the results of the present study confirm the efficacy of treatment with the new formulation of fluticasone at doses of 125 μg and 250 μg BID in patients with moderate asthma. The higher studied dose is recommended only for patients who cannot control the disease with a dose of 125 μg BID, which is equal to fluticasone DPI 250 BID.

During the study the tolerance and safety of the studied drug, in comparison to the reference drug, were also evaluated. A safety profile comparable to the original drug was proven for the two studied doses. The number, intensification and type of reported adverse events did not differ between the studied products and the reference drug, except for local events, which were reported the most seldom for fluticasone administered through the new generation cyclohaler at a dose of 250 μg BID. The absence of significant changes in Cortisol level in urine and in serum after 12 weeks of treatment confirm the lack of any influence of the used therapy on the hypothalamic hypophysal adrenal axis, and prove the high safety profile of the studied drug at the two doses.

Conclusions
1. Fluticasone administered through a new generation cyclohaler at doses of 125 and 250 μg BID is an efficient drug in the therapy of moderate bronchial asthma.
2. A dose of 250 μg BID of the new formulation of fluticasone administered through a new generation cyclohaler is clinically equivalent to a twofold higher dose of fluticasone DPI.
3. The clinical activity of fluticasone 125 μg BID is not weaker than the activity of fluticasone DPI at a dose of 500 BID. There is no clinically significant difference in efficacy between the dose of 250 μg of fluticasone BID and the dose of 125 μg administered through the new generation cyclohaler, which arises from a flat dose-response curve in the range of medium and high doses for this drug.
4. Fluticasone administered through the new generation cyclohaler has a safety profile clinically comparable to the reference drug.

References

EFFICACY AND SAFETY OF A 12-WEEK COURSE OF THERAPY WITH A NEW FORMULATION OF FLUTICASONE PROPIONATE AT DOSES OF 125 AND 250 μG ADMINISTERED THROUGH A NEW GENERATION CYCLOHALER TWICE...

I. Kupryš-Lipińska, D. Tworek, F. Vanderhdist, M. Bocheńska-Marciniak, P. Kuna

Summary. Inhaled fluticasone is used in the treatment of chronic bronchial asthma. Its high efficacy and good safety profile have been proven by clinical trials and observations. Its unique pharmacokinetic properties make it distinguishable from other drugs from this group.

In vitro tests run on an artificial model of the airways and pharmacokinetic studies conducted on healthy volunteers have shown that the new formulation of this drug is outstanding due a twofold better lung deposition, compared to the reference preparation.

The aim of this study was to evaluate the efficacy and safety of the new formulation of fluticasone propionate administered through new generation cyclohaler, compared to original fluticasone administered through DPI (dry powder inhaler) in patients with chronic moderate asthma. The study included 457 patients. 376 persons were randomized by assigning them to one out of the three groups: 127 persons — to the group treated with the new formulation of fluticasone at a dose of 125 μg BID, 122 persons — to the group treated with new formulation of fluticasone at a dose of 250 μg BID, and 124 persons — to the group treated with the reference drug — fluticasone DPI 500 μg BID. At the beginning of the study, the study groups
did not differ in demographical or clinical aspects. Active therapy lasted 12 weeks. The primary endpoint was a mean change in morning PEF during a 12-week course of therapy (ΔmPEF of 15 L/min was considered as statistically significant). Moreover, other functional parameters of the respiratory system, clinical symptoms and the use of emergency drugs were studied. During the whole study the safety of patients was monitored by recording adverse events; in addition, a systemic exposure to fluticasone was evaluated by testing the changes of cortisol in serum and in a 24-hour collection of urine in a subgroup consisting of 45 patients. Statistical analysis was conducted on both groups: intention-to-treat (ITT) and per protocol (PP).

In PP as well as in ITT analysis, a mean change in morning PEF at the end of the therapy in comparison with the initial period was statistically significant in all therapeutic groups. The efficacy of the treatment with fluticasone at doses of 125 BID and 250 BID and the reference preparation did not differ statistically significantly after a 12-week course of therapy or during the whole period of treatment. During the study, significant improvement in the range of other functional parameters such as evening PEF, FEV1, clinical symptoms and the use of emergency drugs was observed in all therapeutic groups, without significant differences in efficacy between the study groups. The comparison of efficacy of fluticasone at a dose of 125 µg BID with the generic product at a dose of 250 µg BID showed a weak dose-response relationship concerning the change in morning PEF, which arises from the almost flat dose-response curve in the range of medium and high doses for this drug. No significant quantitative or qualitative differences were shown between the groups in the recorded adverse events, qualified as related to treatment with fluticasone. There were no significant changes discovered in cortisol concentration in serum or in a 24-hour collection of urine between the initial level and the final visit in any of the groups. Fluticasone administered through the new generation cyclohaler, compared to original fluticasone DPI, allows a twofold reduction in drug dose, retaining clinical efficacy that corresponds to the reference drug at twice the dose. Fluticasone administered through the new generation cyclohaler has a safety profile clinically comparable to the reference drug.

Key words: bronchial asthma, fluticasone, new generation cyclohaler, non-inferiority study.